64 research outputs found

    Could Naturally Occurring Coronaviral Diseases in Animals Serve as Models for COVID-19? A Review Focusing on the Bovine Model

    Get PDF
    The current pandemic of COVID-19 has highlighted the importance of basic studies on coronaviruses (CoVs) in general, and severe acute respiratory syndrome CoV type 2 (SARS-CoV-2) in particular. CoVs have for long been studied in veterinary medicine, due to their impact on animal health and welfare, production, and economy. Several animal models using coronaviral disease in the natural host have been suggested. In this review, different animal models are discussed, with the main focus on bovine CoV (BCoV). BCoV is endemic in the cattle population worldwide and has been known and studied for several decades. SARS-CoV-2 and BCoV are both betacoronaviruses, where BCoV is highly similar to human coronavirus (HCoV) OC43, encompassing the same virus species (Betacoronavirus 1). BCoV causes respiratory and gastrointestinal disease in young and adult cattle. This review summarizes the current knowledge of the similarities and dissimilarities between BCoV and SARS-CoV-2, as well as discussing the usage of BCoV as a model for human CoVs, including SARS-CoV-2

    Bluetongue: a historical and epidemiological perspective with the emphasis on South Africa

    Get PDF
    Bluetongue (BT) is a non-contagious, infectious, arthropod transmitted viral disease of domestic and wild ruminants that is caused by the bluetongue virus (BTV), the prototype member of the Orbivirus genus in the family Reoviridae. Bluetongue was first described in South Africa, where it has probably been endemic in wild ruminants since antiquity. Since its discovery BT has had a major impact on sheep breeders in the country and has therefore been a key focus of research at the Onderstepoort Veterinary Research Institute in Pretoria, South Africa. Several key discoveries were made at this Institute, including the demonstration that the aetiological agent of BT was a dsRNA virus that is transmitted by Culicoides midges and that multiple BTV serotypes circulate in nature. It is currently recognized that BT is endemic throughout most of South Africa and 22 of the 26 known serotypes have been detected in the region. Multiple serotypes circulate each vector season with the occurrence of different serotypes depending largely on herd-immunity. Indigenous sheep breeds, cattle and wild ruminants are frequently infected but rarely demonstrate clinical signs, whereas improved European sheep breeds are most susceptible. The immunization of susceptible sheep remains the most effective and practical control measure against BT. In order to protect sheep against multiple circulating serotypes, three pentavalent attenuated vaccines have been developed. Despite the proven efficacy of these vaccines in protecting sheep against the disease, several disadvantages are associated with their use in the field

    Bluetongue virus reassortment, an overlooked aspect of viral evolution with potentially serious implications

    Get PDF
    Bluetongue virus (BTV) is the prototype member of the Orbivirus genus in the family Reoviridae and is the aetiological agent of the arthropod transmitted disease, bluetongue (BT), which affects ruminant and camelid species. The disease is of significant global importance due to its economic impact and effects on animal welfare. Bluetongue virus, a segmented dsRNA virus, exists as a genetically and phenotypically heterogeneous entity in nature and has the ability to reassort its genome segments in vertebrate or vector cells which have concurrently been infected with more than one strain or serotype of the virus. Although the kinetics of BTV reassortment has been described in both in vivo and in vitro studies, relatively little is known about the consequences which the reassortment of different genome segments may have on the phenotypic properties of the virus. It has been speculated that the reassortment of genome segments between phenotypically distinct strains may result in the generation of novel reassortant viruses, which may display either enhanced virulence or transmission characteristics. The purpose of this review is to provide an overview of the mechanisms of viral evolution which underlie the generation of genetic and phenotypic differences among BTV field strains, to discuss the kinetics of BTV reassortment and to highlight documented examples of the effects of reassortment on the phenotype of the virus. Methods by which BTV reassortants may be generated in vitro, as well as possible approaches for evaluating the consequences of reassortment on the phenotypic properties of the virus are also discussed.Norwegian School of Veterinary Science (NVH)http://www.sciencedirect.com/science/journal/03781135hb201

    Urban Airborne Lead: X-Ray Absorption Spectroscopy Establishes Soil as Dominant Source

    Get PDF
    BACKGROUND: Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008) US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds) of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. METHODOLOGY/PRINCIPAL FINDINGS: We used synchrotron-based XAFS (x-ray absorption fine structure) to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. CONCLUSIONS/SIGNIFICANCE: Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings

    Challenges of operational river forecasting

    Get PDF
    Skillful and timely streamflow forecasts are critically important to water managers and emergency protection services. To provide these forecasts, hydrologists must predict the behavior of complex coupled human–natural systems using incomplete and uncertain information and imperfect models. Moreover, operational predictions often integrate anecdotal information and unmodeled factors. Forecasting agencies face four key challenges: 1) making the most of available data, 2) making accurate predictions using models, 3) turning hydrometeorological forecasts into effective warnings, and 4) administering an operational service. Each challenge presents a variety of research opportunities, including the development of automated quality-control algorithms for the myriad of data used in operational streamflow forecasts, data assimilation, and ensemble forecasting techniques that allow for forecaster input, methods for using human-generated weather forecasts quantitatively, and quantification of human interference in the hydrologic cycle. Furthermore, much can be done to improve the communication of probabilistic forecasts and to design a forecasting paradigm that effectively combines increasingly sophisticated forecasting technology with subjective forecaster expertise. These areas are described in detail to share a real-world perspective and focus for ongoing research endeavors

    A Generic Bio-Economic Farm Model for Environmental and Economic Assessment of Agricultural Systems

    Get PDF
    Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models
    • 

    corecore